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Abstract

This report consists of three parts. In Part 1,
the eikonal and continuity equations are derived for
a sound wave propagating through a fluid in which
there is shear motion of low Mach number and scale
large compared to the sound wave length. On the basis
of a comparison between the eikonal equation and the
Hamilton-Jacobi equation for a charged particle in a
magnetic field it is shown that the acoustic ray paths
are identical with the trajectories of the particles
if the magnetic field is proportional to the vorticity.

In Part 2, the attenuation and fluctuation in
intensity of a sound beam scattered in a turbulent med-
ium are expressed in terms of correlation products of
the turbulent flow. Expressions are also derived for
the phase and intensity fluctuations associated with the
propagation of sound through large scale turbulence, as
discussed in Part 1.

In Part 3, the differential cross section for
scattering of sound by turbulence is developed in a f-orm
suited to treatment of anisotropic turbulence. A simple
anisotropic distribution involving symmetry about a pre-
ferred vorticity axis is discussed.
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Notation

Both vector and tensor notations are employed
according to convenience. Vectors are indicated by
a wavy underline. Repeated tensor indices are to be
summed. Sub- or superscripts in parentheses are not
tensor indices. The anticommuting symbol Ec C,er r=I23)
has the value one for (=J),=2,r=3 , is antisymmetric
to permutation of any pair of indices, and vanishes if
two indices are equal. In terms of this symbol the
cross product of the vectors A, and EA is C, = AAh.

Symbols of the form 43 indicate integration over
three dimensional space. The symbol d'fl indicates in-
tegration over all angles.

Space derivatives such as ;/f A are
frequently denoted by#p. and 6at respectively.



On the Propagation of Sound
in a Turbulent Fluid

Part 1. Propagation of Sound through Large Scale Turbulence

1.1 When a sound wave propagates through a fluid in shear
motion, energy is scattered out of the beam± if the spatial
power spectrum of the shear motion, or turbulence, has appreci-
able strength at wave numbers which are the same order of size
as that of the sound wave. When the dominant eddy size in the
shear flow is considerably larger than the sound wave length such
scattering becomes very small, but there remains a coherent type
of perturbation which results in gradual distortion of the wave
fronts without loss of energy. This distortion can be described
by a WKB type approximation procedure which yields an eikonal
equation determining the phase fronts and a continuity equation
describing the amplitude fluctuations associated with the phase
distortion.

In the presence of a shear velocity field of low Mach
number the wave equation for sound propagation has the form2

ea. = 5i --j -a , ax-- (1.1)

where p is the excess pressure, , the mean pressure, t4 the
longitudinal or sound velocity obeying

,p (1.2)

and w the shear or transverse velocity obeying

= 0 (1.3)

The velocity of sound in the undisturbed medium isc.

(1) Kraichnan, Robert H., J.A.S.A.25 1096 (1953)

(2) Lighthill, M. J., Proc. Roy. Soc. A211 564 (1952),
Proc. Camb. Phil. Soc. 49 53371953)
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In the absence of the shear velocity , the pressure
and velocity for a weak plane sound wave of arbitrary form may
be taken as

= r.1A4A

where A is a dimensionless constant which we shall call the amp-
litude. We now try to satisfy (1.1), under the assumption that
the Mach number of the shear flow is small and that v varies but
little in a sound wavelength, by replacing A with the space
function A(C) and n40 with the function ik4). The usefulness
of this approach is that because V varies slowly, the variations
in A andi9 from their unperturbed forms will also be slow.

By making use of the divergence and curl conditions
(1.3) and (1.2), the right side of (1.1) may be written

P2 3X )Xzv" - -

Since, because of the low Mach number associated with W, this term
is a small perturbation, we may replace V72 ZA by the unperturbed
value - within the limits of the approximations to
which (l.1) is valid.

We shall now substitute into (1.1) the functions

pA f i-z x) u. A((!v% t9., 9C-F)(jl-Sz

where - stands for 9-/ax . The result is

Af"- 9,. A-f "+ v,2z9 A+ 2 A,, z, f V' A (1.6)

where the prime denotes differentiation with respect to the
argument. The quantities A, w are small quantities
in this equation according to the assumption of slow variation
of the shear velocity. Hence, neglecting terms bilinear in these
quantities we obtain the approximate equation

Af"- ,- Af"+ 7 11f: 'A + 2 A,. 1,. f '-- 2 "[wt',. Az f #,., ,,* A ' (.)



We have also neglected the term in V1 A , which will be small
compared to A,. • Since F is a quite arbitrary function, the
coefficients of f" and f' must be independently zero; we
therefore obtain the two equations

(1.8)

z,,,+A V'19 (1.9)

The first of these relations is an eikonal equation determining
the phase as a function of space. Rewriting the second in the
form

(1.10)

it is seen to be a continuity equation relating square of amp-
litude to phase. Eq. (1.10) shows that the variations in amp-
litude arise from two causes: focusing effects associated with
the curvature of the wavefronts; and the necessity for mainten-
ance of constant energy flow through regions in which the local
velocity of propagation varies in the direction of propagation.

1.2 In this section it will be shown that the effect on the
propagation of sound rays of large eddy size turbulence, or, in
general, shear motion which varies but little in the space at a
sound wave length, bears a direct analogy to the effect of mag-
netic fields on the paths of charged particles. Since the latter
has been extensively studied in connection with fields such as
cosmic ray research and particle accelerator design, the analogy
possibly could be a valuable tool in visualizing sound propagation
phenomena. The analogy is based on a similarity between the
eikonal equation for sound waves in a slowly moving medium and
the Hamilton-Jacobi equation for the motion of charged particles
in a magnetic field.

Consider a particle whose motion is determined by the

Hamilton equations

Z_ H
a9CK (1.11)

where q. is the position vector of the particle, q. the time rate
of change of this vector. The Imiltonian H and momenta o, are



related to a time-independent Lagrangian function L (q.c,)by

a aH (po. .~) 9 L (1.12)

The possible motions of such a particle corresponding
to a total energy E may then be found, according to the Hamilton-
Jacobi procedurei, by solving for S the equation

H q -2s-, 9.) (1.13)

in which ?S/ago replaces p. wherever it appears In the Hamiltonian.

The paths along which the particles of energy E travel
may be described very simply in terms of thp function S. Accord-
ing to Hamilton's principle of least action4 the particle paths
determined by (1.13) are those for which the action integral

tcz)
A. (l.14)

is extremal (maximum or minimum) between two arbitrary fixed end
points q.. and q.". Regarding the time as a parameter along the
path, we may write dg = ., so that, substituting ?Sla9 for
, the extremal condition on (1.14) may be expressed as

_(2)8f A s ( )

If now a wave pattern were constructed such that S were every-
where proportional to the total phase of the waves, (1.15) would
determine those paths between the two fixed end points along
which the total change of phase would be extremal. It is therefore
a statement of Fermat's principle, and the paths so defined are
simply the ray paths of the wave system as ordinarily understood.

We have therefore obtained the general result that the
ray paths of a wave system are identical with a family of trajec-
tories of particles obeying a Hamilton-Jacobi equation identical
with the eikonal equation for the waves. This fact, which is
the basis of the correspondence between classical and quantum
mechanics, takes a simple and well known form in the case where
the Hamiltonian contains no velocity dependent forces. Then,

(3) See, e.g., Goldstein, "Classical Mechanics" Addison-Wesley,

Cambridge (1951)

(4) See reference (3) above
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the particle velocity jo is proportional to the canonical
momentum r so that the ray paths are normal to the phase
fronts, S- constant, and the ray direction at any point is
the direction of the vector ?Slag,.

The Lagrangian of a non-relativistic particle of
mass r and charge e in an electromagnetic field with vector
potential A,(q) and scalar potential V(3) is

L=Th3 J OV (1.16)
2d

where co is the velocity of light.

The corresponding momenta and Hamiltonian are

A(.a )'12 + eV (117)

Accordingly the Hamilton-Jacobi equation is

. -, v = E

where E is the total energy of the particle.

The approximate eikonal equation for a sound wave
propagating in a medium undergoing shear flow was found to be

9,, + 2-.'QWe(-I = (1.8)

according to section 1.1 Here w9/d is the total phase, ,' is the
frequency, a the velocity of sound in the still medium, and w.,
the shear velocity field obeying

/, at= 0(1.3)

Since (1.8) is accurate only to terms linear in w,, it may be
written to equally good approximation as

(A-, 0' -I ,,) (1.19)



6

which, it may be verified, differs from (1.3) by only the term

In this form, the similarity to the Hamilton-Jacobi
equation (1.18) with V= 0 is readily apparent. The similarity
is made more complete by the fact that the vector potential
obeys , when V=constant, in analogy to (1.3). The exact
identification between (1.18) and (1.19) may be shown by dividing
(1.18) by E, and noting that 2,E is simply the square of the
ordinary momentum of the particle, which we may denote by P 2 .
In terms of this quantity (1.18) may be written

-C<A ) /P = / (1.20)

which is identical with (1.19) if

S" /p = S' - e cO A./P (1.21)

Thus, paths of sound rays in a fluid in which the local velocity
is W. are identical with the trajectories of particles of charge
e and momentum P moving in an electromagnetic field corresponding
to the vector potential A =o vP/e.

Several limitations on the analogy must be kept in mind.
First we have assumed that the velocity field v/. changes but little
in a distance of a sound wavelength, and is small compared to c.
Secondly we have not as yet included the effects of time variation
of wa; our discussion of the Hamilton-Jacobi equation was based
on the assumption of time-independent potentials. Actually, the
requirements of large eddy size and small Mach number imply that
the time-variations in vVk will be very slow indeed compared to
those of the sound wave and except for special cases they will
not result in significant departure from the time independent
equations.

The magnetic field corresponding to the vector potential
in (1.21) is

H - curi A (d. 1 -P/t) c,4,l~

or H /e.P - (1022)

where Y is the vorticity associated with . Hence the results
of this section may be sumned up by saying that, within the
limitations noted above, the ray paths of a sound wave in a



r
7

moving fluid follow the: trajectories of charged particles in
a magnetic field everyrwhere proportional to and in the opposite
direction from the vorticity vector, the proportionality con-
stant being determiped in terms of the (arbitrary) particle
momentum by (1.22).>

It was noted above that every turbulent velocity field
V\ corresponds to a possible magnetic field in free space, and
the converse is also kinetically possible. Hence, the propaga-
tion of sound in a moving atmosphere should exhibit all the
focussing effects, shadow effects, and other phenomena encountered
with particles travelling in magnetic fields. It would be of
interest to examine to what extent the analogy holds true when
eddy sizes the order of a wavelength or smaller are involved.
This would correspond, if the analogy held, to the quantum
mechanics of charged particles in magnetic fields. Also of in-
terest is the question of whether such time-dependent phenomena
as the betatron acceleration mechanism have counterparts in the
sound propagation case. To investigate this it is necessary to
extend the treatment above to include time dependent potentials.
There could possibly result an analogy between the ray paths for
the time dependent case and the traje-ctories of the 4-dimensional
Hamilton-Jacobi equation for a relativistic particle.

Part 2. Attenuation and Intensity Fluctuations

2.1 When a sound wave propagates through a turbulent fluid
medium, the local intensity of the wave is altered both by
scattering of energy1 out of the beam, as discussed by the author
in a previous paper, and by distortion of the shape of the wave-
fronts by large scale shear flow as indicated in the previous
section. In this section, the intensity variations to be ex-
pected from both effects will be expressed in terms of the
statistical correlation products associated with the turbulence.
The calculations will be confined to cases in which the character-
istic time periods of the turbulence are very large compared to
the period of the sound wave; this represents a realistic re-
striction for the discussion of sound propagation in the atmosphere
or sea, where very small Mach numbers are ordinarily encountered.

In reference (1) expressions were derived for the
differential scattering cross-section for sound waves traversing
a region in turbulent motion. It follows from the analysis
developed there that when the Mach number of the turbulence is

(5) Note that there is no direct relation between the ape4
of propagation of the rays and the speed of the par es.
Only the spatial forms of the paths are compared,



small, the frequency spectrum of the differential scattering
cross-section is given by

h c(2.1)

Here c is the velocity of sound, e) a unit vector in the direc-
tion of the incident sound wave, d')a unit vector in a direction
of scattering, w. the frequency of the incident sound-wave, and

.Vk/c,) the 4-dimensional Fourier transform of the turbulent
velocity field. I(n' ) is related to the differential scatter-
ing cross-section by

where r is the period of time over which the time Fourier analysis
is performed.

The principal effects on the scattering of the time
variation of the turbulence as reflected in the 4-dimensional
transform /C&-) are first, a slight broadening in frequency of
the scattered wave, and second, an effect on the amount of
scattering at very small angles in radians of the order of mag-
nitude of the ratio of the characteristic frequencies of the
turbulence to w.. These effects will have a negligible influence
on the attenuation of a sound beam, which depends on the total
cross-section and hence we shall express the scattering cross-
section in the time independent form

2 -
7  r - (I)n - (2.3)

where ° and V/(A) the 3-dimensional Fourier transform of
the shear velocity is defined by

) -(T) J ve d(.4)

Equation (2.3) can be derived by performing the analysis of
reference (1) under the initial assumption that the shear veloc-
ity is independent of time. In using this expression to calculate
the attenuation of a sound wave over long distances, it is assumed,
of course, that the turbulence is statistically stationary over
the regions and times involved.
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The scattering cross-section as it appears in (2.3)
may be expressed readily In terms of the correlation products
usually employed in describing turbulence. Rewriting the ex-
pression in WC*),

0- (U() =Z1.fl a k~ Ck4. (1 a±r J)) (L2)-~"j (2-W4(~ -n .. (2.5)

If the correlation tensor of the turbulence is denoted by

A (2.6)

where the overbar indicates averaging over a suitable region
of space, the Fourier transform of 1,

T# ( )-- C2- aft, (A)e- = d A (.2.7)

differs from (A¢)w<u )only in that it is normalized by the
total volume of turbulence considered. Hence, the scattering
cross-section per average cubic centimeter of turbulence will
be

.) 4 2) (,i 2 (2) (24 (u)
;h0 nX - (2.8)

The total scattering cross-section is found by in-
tegrating (2.8) over all scatt-ering directions rf":

"~ zy = , fc .n ,',,,, fq -(k.fEJa lj (2.9)

If the initial intensity of the beam of sound is Io, the mean
intensity after traversing a distance y will be

I = )y (2.10)

Formula (2.10) will describe the attenuation correctly
only if y is greater than the distance over which there exists
appreciable correlation among the eddy sizes (wave-numbers)
contributing to the scattering. Within shorter distances, there
will be coherence and interference between the waves scattered
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from different points. The restriction to distances longer
than the correlation length is implicit in (2.9) because the
space averaging involved in the correlation tensor t(x9 is
customarily carried out, in the case of extended turbulence,
over regions large compared with the values of A of interest.

The Mach number of the turbulence encountered in the
atmosphere, the extended medium of principal interest, is
sufficiently low that the amount of attenuation in a distance
the order of several correlation lengths may be expected to be
quite small. In this case, the relative fluctuations to be
expected in the attenuation will be very nearly averaged out
in a distance of transmission long enough to result in sig-
nificant weakening of the sound beam. An estimate of the
intensity fluctuations may be obtained as follows. Let the
linear distance over which the space averaging in (2.6) has
been carried out be L. Then the mean scattering cross-section
of a region of the turbulence one centimeter square and ex-
tending a distance L in the direction of propagation will be
L7 cd"). The fluctuations from the mean in the scattering from
this region will then be given by L& L (Yc,,) where

ca ).. ), n " 1 T[,,( k.[E _dh I ) d (2.11)

The corresponding mean-square fluctuation is

( t)j > = -3 f2). Z . '( " 1)- ( 'a',  
(Z, _ 2 , Cam

x a ,< o d- ' ) (,.[ , ,_W"])> a ' a , ( 2.12 )

where the averaging is over a representative distribution of
regions of linear size L.

If the fluctuations in a are taken into account, the
intensity after traversing a distance y will be

- , - fY'o.oc '"~JdY
-C re e 

(2.13)

Hence, the mean-square fluctuation in the logarithmic decrement
of the intensity will be

KG 09 <)a>



It has been assumed that correlation in the turbulence is
negligible outside the distance L. Hence if y is considerably
larger than L we may expect that the total fluctuation appearing
in (2.14) is the result of random addition of fluctuations from
y/L independent regions. According to a well-known law we
should then have

so that the ratio of the fluctuation in logarithmic decrement
to the mean decrement is

~/K(~1o (~0 yZ>(1.(r /Z)> -(7p)2V(oc~5))/CA (2.16)

It is apparent from (2.12) that the calculation of the
fluctuation <[c '9ff requires a knowledge of the fourth order
correlation product

SC/ (2-17)

which may be expressed in terms of velocity correlation products
by the use of (2.7) and (2.6). The evaluation of such fourth
order correlation functions is difficult with existing theoretical
and empirical knowledge of turbulence.

2.2 As shown in section 1.1 the phase of a sound wave propa-
gating in a fluid in which there is low Mach number turbulence,
the scale of which is large compared to the sound wavelength,
becomes distorted according to the eikonal equation

, +a- w/-!= 0 (1.8)

where, if w is the frequency of the sound wave, k/O is the total
phase. The shear velocity field isw.. If the unperturbed
sound is a plane wave propagating in the direction of the unit
vector n, the unperturbed phase will be -(°' so that,
writing 0 = + t 9 ", the eikonal equation may be written

+h, X)( o + 2C-(n+V,* Wzd (2.18)

If the distortion is gradual, corresponding to the assumption of
low Mach number, 0 will vary quite slowly as a function of space
and hence the terms nd and \v.4 will be small compared to
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the other terms in (2.18). Therefore, the phase distortion
will be determined to a first approximation by the equation

n . -t + C ti C I = 0 (2,19)

If the value of the phase is given on some wavefront by, say,
O= o, then according to (2.19) the phase further along the
direction of propagation will be given by

- C ) aC1 - (2.20)

where 2° is a point on the initial wavefront, wc,4C) is the
component of in the direction of ja and the line integral is
over a length L along the direction of a. Although (2.19) is
approximately correct everywhere in the region of shear motion,
it must be noted that the integrated form (2.20) will be correct
only when the change of direction of the wavefronts indicated
by 0Ca is small; i.e., the error introduced in passing from
(2.18) to (2.19) is essentially that the initial direction of
propagation U, appears in (2.20) instead of the local direction,
which is the resultant of the initial direction and the total
distortion which has occurred up to the point of interest.

According to (2.20) the mean square phase deviation at
the point LC 0 14n L is

<ii~ ( j-c;,~C' jh) (2.21)

where the averaging is over a statistically representative
ensemble of shear flow systems so as to provide a valid measure
of the phase distortion in the turbulent flow. The quantity
(''cC')W'c',C£") is just a diagonal component of the two point
correlation tensor <V, cx')C °). Ij the statistics of the
turbulence are spatially homogeneous,' this tensor is a function
of ''-'" only and reduces to the single argument correlation
tensor defined by (2.6). In this case (2.21) reduces to

() s d J ily d Coo) d Cx".k) (2.22)

(6) This does not imply isotropy.
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This expression is easily reduced to single integrals. If
we imagine a plane of integration in which y=× _Y) and Z
are perpendicular cartesian coordinates, the integration in
(2.22) is over a square of side L, oriented with the y and
axes. It is readily seen by drawing the diagonal lines
y-A=A that the weight with which the value X occurs in the
square is L-IAM. Since A ranges from L to-L and since
M t), () := h, - the integral in (2.22) may be re-
written -

_,L

<LO4kr+Lrh~f 4 (~cAA (2.23)

where we have noted in writing . that the integration
is along n.

When the distance of propagation L is considerably
longer than the maximum distance over which there exists
correlation in the turbulence, '(At) will be negligible for
values of A greater than L and hence, for this case,

>~ ~ (AZ hi~L4Aj('.>~A (2.24)

Under the assumption that L is large, the second term will be
small relative to the first and hence the plausible result
that the root-mean-square phase deviation varies as fL, and as
a quantity associated with the mean velocity fluctuation length
and magnitude.

According to section 1.1 the local intensity of the
distorted wave (more accurately, the square of the amplitude)
is related to the phase deviation by the continuity equation

-2 C Sw, 4  19

where e is the logarithm of the intensity. Under the approxima-
tion employed in deriving the phase deviation we may replace
(1.9) by the approximate form

- -- Z n how(2.25)

(7) A similar derivation was carried out for a specific model
of turbulent flow by Blockintzev: "Acoustics of an
Inhomogeneous Moving Medium." Translation by R. T. Beyer
and D. Mintzer under RAG Contract N7-ONR-35808 (August 1952)



so that, following the analysis just given,

Ie + 2 d . V (2.26)

will represent the approximate logarithmic intensity increment
after propagating a distance L into the moving medium. Writing
out V' in the form a +a'/C(.,J+ where n lies
along the 7_ axis, and using expression (2.20) for ,

- Z. (? - ----- (2.27)

Hence,
+C _C-- +-- + s)_ l) W3CO

The term (w~cx° L!)-WCx6))/d depends only upon variations, in
the direction of propagation, of w4, the component of shear
velocity in the direction of propagation. Its physical sig-
nificance is that it represents the change in amplitude required
to maintain a constant transfer of energy as the velocity of
propagation along a line of propagation varies according to w3cx)
It is apparent that this term is of a fluctuating nature, and
in view of the spatial homogeneity of the turbulence which we
have assumed, it will not make any cumulative contribution to
CC x+O-L), and will not be considered further.

The first term, involving derivatives with respect to
Y, and xz, represents changes in local intensity due to fluc-
tuations in the spacing of ray paths as a result of the curvature
of the phase fronts. In fact, /(,)L+$/@) gives just
the local curvature of a phase front. This type of intensity
fluctuation may be regarded as the resultant of a series of
localized focusing and defocusing actions. Let the integral in
(2.28) be denoted by ETCC . Then, if we employ the notation

l , / ( o C (2.29)

for compactness,

'Ll (2. 30)



(2.30)

represents the mean square intensity fluctuation due to wave
front curvature. Using(2.20),

Itc~ z " f e ')> (2.31)

*Vi riting

(2.32)

we note that this correlation product can depend only on the
difference of the two coordinate points in the case of homogen-
eous turbulence; then,

f -?/1) dx d x-(2.33)

where y =  - , and the variables of integration have
been transformed to give more convenient limits. The integral
in (2.33) is similar to that in (2.22) except that the area of
integration is a rectangle in this case instead of a square.
Using a geometrical construction similar in principle to that
employed in the evaluation of (2.22), one finds, with some
manipulation,

It will be noted that this expression is symmetric in y
and y'. Denoting it by CCy,y') ,

(~CC C2y, f,, ,) dJyy' (2.35)

As in the case of the phase deviation, this expression for the
intensity fluctuations in terms of integrals over second order
velocity derivative correlation products can be simplified when
the propagation distance L is much longer than distances over
which there exists correlation in the turbulence. For such long
distances, following the argument used in obtaining the approxi-
mation (2.24),

C,.y,y') --- y-Y')"f(,)JA - X-y'lJf0 PAZd> (2.36)
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Approximately correct results will be obtained by substituting
this asymptotic form for (CYjY') into (2.35). The reason is
that since GC' -Iy ) grows with y and y/, the contribution to
(2.35) from values so small that (2.36 )is not valid will be
minor. Hence setting

F f 7C(A)d (2.37)

we have

(f cx 6Tf) F ( fCy y)- iy-yI ] dyy '(. (2.33)

Considering this as an integral over a square of side L, it may
be handled as were the previous cases, except that for evalua-
tion of the term in y+y', the weighting of the lines y+y-=A will
be L- ),L- IJ , and X will range from 0 to 2L Then,

faf L. 2L L

ECY Y')-,Y-y'I]dy'= dA- (,--A iYJ A (2.39)

Hence,

< rE, 0-+ 1'.Q ) j>" F  (2.40)

where F is defined in terms of the quadratic correlation of the
velocity derivatives by (2.37), (2.32), (2.29). Thus the root-
mean-square intensity fluctuation will increase as L! The rapid
increase of the intensity fluctuations relative to the phase
deviation is due to the fact that the fluctuation at distance is
the cumulative result of wavefront curvature along the entire
path of propagation as well as at the point L.

Part 3. Scattering by Anisotropic Turbulence

In a previous paper1 an explicit expression was derived
for the scattering of sound in a region containing isotropic
turbulence of arbitrary spectrum shape. In this section, the
effects of anistropy on the scattering are discussed.

3.1 In most physical examples of turbulence, there is a
significant degree of anisotropy because the mechanism by which
energy is supplied to the turbulence tends to produce vorticity
in certain preferred directions. In the process of transfer of
the energy from large eddies to small the anistropy becomes
obscured gradually, and near the upper limit of the turbulence
spectrum there is usually a high degree of isotropy. In terms
of spatial distribution, it may be expected that the maximum
anistropy exist near the vorticity producing boundaries while
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as the vorticity diffuses away from the boundary, the anisotropy
become obscured. This is true, for example, in the case of at-
mospheric turbulence resulting from vorticity produced at the
,,round.

In speaking of the isotropy or anisotropy of the turbulence
in a region of fluid we refer not to the instantaneous character
of the flow but to statistical properties which are defined as
averages over either a long period of time, or, as is practically
equivale-nt in this case, a very large volume of fluid containing
many such regions as we are examining. Alternatively, the statis-
tical characteristics may be expressed as averages over an ensemble
of flow systemj the ensemble being so chosen as to represent the
fluctuations encountered in time averaging or large scale space
averaging. In what follows the ensemble average of a quantity PA
will be denoted by <A>.

Consider a shear motion for which the velocity is given
by wacx,-). The velocity field may be described in terms of a
Fourier representation by

Ck,. C f t (t e dt (3.1)

The condition that the motion be a pure shear flow is

e(3.2)

or

In the reference mentioned,1 it was shown that when a
plane sound wave of frequency w. propagating in the direction of
the unit vector n') is scattered in a region of a fluid undergoing
such shear flow at low Mach number, the power spectrum of the
energy scattered per unit solid angle in the direction re' is given
by

IC1 won
1

, tf

2, i tn~QeI (34.)

In'Mw) is so normalized that the differential scattering cross-
section is given by

o-"r= ,- (3.5)
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where -r is the interval over which the time integration in

(3.1) is carried out.

In order to investigate the effects of anisotropy
on the scattering predicted by (3.4), it is convenient to
express the Fourier elements V/4 k4w) in terms of the vorticity.
The vorticity axial vector is defined by

= E, W) / )X ( 3 . 6 )

where the quantity E is antisymmetric to pe mutation of any

two indices and e,2'!-/* From this it follows, as a result of
(3.3), that

£%c, '. k-) (3.7)

Substituting this expression in (3.4),

!2~~c 4 c.'er) O

with I -  W , ....

Because of the antisymetry of in c and ar the term in t~leijm

vanishes, leaving

( (it ) T (-1 -- L -" )() On

or, introducing the vector volocity potential V&-C(2jt) by

'A . (3.9)

so that

'C )V/VC." ,) V , (3.10)

(8) This is readily shown by multiplying (3.6) by kA- and usin7

the relation A = - .
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(3.8) becomes

This form, or (3.8) displays the angular behavior of
the scattering more immediately than the original expression
(3.4), and shows that n' and n"I play symmetrical roles in the
scattering formula. The quantity in the straight brackets has
a very simple geometrical significance. It is equal to the
volume of the parIallelopided formed by the vectors P', 2 and
Y. Thus the angular dependence, aside from the detailed struc-
ture ofY, is the combined result of two factors; first, the
quantity '). which favors scattering in forward and backward
directions while indicating zero 900 scattering, and second, the
parallelopided volume which is maximum when the angles between
the three vectors re right angles and hence indicates zero
scattering at z ero and 1800, and also in the case when either
' orf lies in the direction of the vorticity component for the

particular wave number involved. Thus in the case of a shear
flow in which there is a preferred direction of vorticity it is
to be expected that the total scattering will be maximum when
the direction of the incident wave is normal to the vorticity
direction and that the scattered radiation will be most intense
in or near the plane normal to the vorticity. This specific
angular behavior would be superimposed on the angular dependence
associated with isotropic turbulence.

Both the vorticityY and the velocity potentialy have
vanishing divergence if the velocity field itself is to be
divergenceless. However, the divergenceliess character of ) as
defined in (3.9) is independent of any condition on E . Hence,
(3.11) will describe the scattering from some possible incom-
pressible flow, irrespective of whether or not Y is divergence-
less. In the latter case, however, the vorticity is not related
to Y in the simple fashion indicated in (3.10).

The advantage of describing the shear velocity field by
the inherently divergenceless expression (3.9) is that one need
not impo-se explicitly on the statistical ensembles describing
turbulent flows the condition (3,3) that the velocity vector and
wave vector be perpendicular. As an example, for which no ob-
servational validity is claimed, we shall examine the scattering
from a velocity distribution which describes a particular type of
hypothetical turbulence with a preferred axis of vorticity and
which leads to especially simple expressions. Consider the

(9) Strictly speaking, it cannot be immediately concluded that
the scattering at zero degrees vanishes without ascertaining
the behavior of V(1.,") for very small k. It is apparent,

however, as was pointed out in reference (1), that the

frequency spectrum of the radiation in the forward direction
must be very sharp.
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velocity spectrum

((e)

W ~ ~ k C_ -F -- C.*p( , _, (3.12)

in which I °'is a unit vector. For a fixed, constant !P, this
spectrum describes motion confined to directions lying in
the plane perpendicular to n"'. If it is assumed that the en-
semble distribution of '°'is independent of &,- and that the
anisotropy of the turbulence is completely described by the
distribution of_. i.e., if KIF~k,.) depends only on Al
and fC -)is uncorrelated with P41 the ensemble average of the
scattering will be given by

r~l l tL -- "( (1 Ct Xz, 1 (0. .n -- nCr,

0) (3.13)

where F(IA.,) - < C ,

For this situation it is apparent that the dependence
of the scattering on the direction of the incident wave,,:,, is
entirely contained in the factor K" r r> which Is the
mean square volume of the parallelopipec bounded by the three
unit vectors. This quantity is easily calculated for a given
distribution of d"around some preferred direction. In view of
the simplicity of this example it would be of interest to see
to what extent axially symmetric turbulent flow occurring in
practice could be fitted to the distribution described. The
principal lack of generality in the axially symmetric distribu-
tions described by (3.12) with the specializations we have noted
is that a definite weighting is given to wave-vectors A according
to the angle they make with the axial direction e as may be
evidenced by forming the energy-spectrum corresponding to (3.12):

1,/ C#,.)) =  /L c . , ) la(, , (3.14)

This weighting, which favors wave-vectors lying in the preferred
plane of motion, is not an unreasonable one a priori, but it
should be emphasized that no empirical validation of this dis-
tribution is implied.
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Appendix

In the analysis of Section 2.2 there appeared
several integrals of the form

ab
I, (A.1)

or

.T=f f H.Cx'y)dxy (A.2)

These expressions are readily converted to single integrals
by first finding the weight with which given values of the
arguments A=L-yI orXxty occur in the rectangular regions
of integration. Considering 11., first, it appears from
Figure 1 that in region II of the domain of integration the

weight corresponding to the argument value X is bdA, the
area of the parallelogram of base d>l and height b Similarly,

neglecting areas of order (dX) z , the weights appropriate to
regions I and III are (b-IA )dA and (a-A)dA respectively. In
region I, IX; varies from o to b, in region II from 0 to a-b,
and in region III from a,-b to a. Hence I,, expressed as the
sum of integrals over the three regions, is given by

,(A) ( -A)A (A.3)

If we note that

. C (A .I.)

this may be written in the form,

,=£ G C C)(o-A)dA--- (A.5)

This expression is symmetric in a. and b (as is readily verified

for the last term) and hence is valid also for a<b. When a-b,

I, = -c A) (4 -A)dA(A6
.T' (A.6)

which agrees with the result of the derivation described in the
text for the integration over a square.
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Considering now the evaluation of XZ, it appears
from Figure 2 that in region I the weight corresponding to
the argument value x+y=A is ?Xi while in region II it is
(20-A)dA .In region I X ranges from 0 to a and in region II,
from M to 2o.. Hence, both these weights can be expressed by
the single function (c-L-Nl)dA • Then,

= (A)(cx -la-))dA (A.7)

This method of evaluating 1, can be extended to rectangular
domains of integration also.
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X =JX-Yj

xx

FIGURE 2.DOMAIN OF INTEGRATION FOR 1


